Solution Elementary Linear algebraChapter 1.9Exercise 17a)Let p(x)=a+bx+cx^2p(x)=a+bx+cx2 be polynomial that passes through points (0,1)(0,1) and (1,2)(1,2). Then\begin{align*} 1 &= p(0) = a+b\cdot 0+ c\cdot 0^2= a\\ 2 &= p(1) = a+b\cdot 1 + c\cdot 1^2 = a+b+c \end{align*}12=p(0)=a+b⋅0+c⋅02=a=p(1)=a+b⋅1+c⋅12=a+b+cThus, for any t\in\mathbb{R}t∈R we haveAnswerp(x)=1+tx+(1−t)x2 , ∀t∈R\begin{align*} a &= 1 \\ b &= t \\ c &= 1-t \end{align*}