Solution

Elementary Linear algebra

Chapter 1.9

Exercise 17

a)

Let p(x)=a+bx+cx^2 be polynomial that passes through points (0,1) and (1,2). Then

\begin{align*} 1 &= p(0) = a+b\cdot 0+ c\cdot 0^2= a\\ 2 &= p(1) = a+b\cdot 1 + c\cdot 1^2 = a+b+c \end{align*}

Thus, for any t\in\mathbb{R} we have

Step 2

Graph



Answer

p(x)=1+tx+(1t)x2 , tR

\begin{align*} a &= 1 \\ b &= t \\ c &= 1-t \end{align*}

To Top