Solution

Engineering Mechanics (Dynamics)

Chapter 12

Exercise 222

Step 1


The measurements at the second time indicate that {v}'_c = 80 km/h and the wind is coming from the north-east, then we have,

\bold{v}_w = 80\bold{j} - {v}'_w\cos45^\circ\bold{i} - {v}'_w\sin45^\circ\bold{j} = \bigg(80 - \frac{{v}'_w}{\sqrt{2}}\bigg)\bold{j} - \frac{{v}'_w}{\sqrt{2}}\bold{i}~~~~~(*)

The absolute velocity of the wind v_w is the same for both measurements! This requires that,

50\bold{j} - v_w\bold{i} = (80 - \frac{{v}'_w}{\sqrt{2}})\bold{j} - \frac{{v}'_w}{\sqrt{2}}\bold{i}

Equating the y-components yields

50 = 80 - \frac{{v}'_w}{\sqrt{2}}

{v}'_w = 30\sqrt{2}\mathrm{~km/h}

Substituting into Eq. (*) gives the velocity of the wind,

\bold{v}_w = \bigg(80 - \frac{30\sqrt{2}}{\sqrt{2}}\bigg)\bold{j} - \frac{30\sqrt{2}}{\sqrt{2}}\bold{i} = \{-30\bold{i} + 50\bold{j}\}\mathrm{~km/h}

So that,

Noting that \bold{v}_w has -\bold{i} and +\bold{j} components, as shown in the Fig., its direction is therefore


Step 3



Answer

Ans


To Top