Solution

 a. Experiment is assigning four men to four one-man jobs, among them two are from minority group.


b. Let M_1 and M_2 be men from minority and N_1 and N_2 be men from non-minority group.

Let J_1, J_2, J_3, J_4 represent the jobs, ordered in decreasing order of desirability.

Let xyz represent the event that man x, y and z is assigned to job J_1, J_2 and J_3.

S=M1M2N1,M1M2N2,M1N1N2,M2N1N2,M1N1M2,M1N2M2,M1N2N1,M2N2N1,M2M1N1,M2M1N2,N1M1N2,N1M2N2,M2N1M1,M2N2M1,N1N2M1,N1N2M2,N1M1M2,N2M1M2,N2M1N1,N2M2N1,N1M2M1N2M2M1N2N1M1N2N1M2

S= \left\{ \begin{matrix} M_1M_2N_1, & M_1N_1M_2, & M_2 M_1 N_1, & M_2 N_1 M_1,& N_1M_1 M_2 , &N_1M_2 M_1\\ M_1M_2N_2, & M_1N_2M_2, & M_2 M_1 N_2, & M_2 N_2 M_1,& N_2M_1 M_2 , &N_2M_2 M_1\\ M_1N_1N_2, & M_1N_2N_1, & N_1 M_1 N_2, &N_1 N_2 M_1,& N_2M_1 N_1 , &N_2N_1 M_1\\ M_2N_1N_2, & M_2N_2N_1, & N_1 M_2 N_2, &N_1 N_2 M_2,& N_2M_2 N_1 , &N_2N_1 M_2\\ \end{matrix} \right\}

c. The two minority men are assigned the least desirable jobs are when first two jobs are given to N_1N1 and N_2N2. The number of such simple events is 4.


P(Two men from minority group get least desirable jobs =

 No. of favorable Simple

Total no. of Simple event

=4/24

=1/6

Answer
c. \dfrac{1}{6}
To Top