Relative velocity can be determined from the equation:
vA=vB+vA/B
where the known velocities in the reference frame given in the problem are:
vA=vAsin30°i+vAcos30°jvB=vBcos45°i+vBsin45°j
Substituting these into the first relation, with vA=40ft/s and vB=30ft/s, we get:
vA/B=vA−vB=vAsin30°i+vAcos30°j−vBcos45°i−vBsin45°j=(vAsin30°−vBcos45°)i+(vAcos30°−vBsin45°)j=(40sin30°−30cos45°)i+(40cos30°−30sin45°)j=(−1.213i+13.428j)ft/s
The magnitude of this relative velocity is then:
vA/B=(−1.213)2+13.4282=13.5ft/s